Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 114

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of decay heat on pyrochemical reprocessing of minor actinide transmutation nitride fuels

Hayashi, Hirokazu; Tsubata, Yasuhiro; Sato, Takumi

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(3), p.97 - 107, 2023/08

The Japan Atomic Energy Agency has chosen nitride fuel as the first candidate for the transmutation of long-lived minor actinides (MA) using accelerator-driven systems (ADS). The pyrochemical method has been considered for reprocessing spent MA nitride fuels, because their decay heat should be very large for aqueous reprocessing. This study was conducted to investigate the effect of decay heat on the pyrochemical reprocessing of MA nitride fuels. On the basis of the estimated decay heats and the temperature limits of the materials that are to be handled in pyrochemical reprocessing, quantities adequate for handling in argon gas atmosphere were evaluated. From these considerations, we proposed that an electrorefiner with a diameter of 26 cm comprising 12 cadmium (Cd) cathodes with a diameter of 4 cm is suitable. On the basis of the size of the electrorefiner, the number necessary to reprocess spent MA fuels from 1 ADS in 200 days was evaluated to be 25. Furthermore, the amount of Cd-actinides (An) alloy to produce An nitrides by the nitridation-distillation combined reaction process was proposed to be about one-quarter that of Cd-An cathode material. The evaluated sizes and required numbers of equipment support the feasibility of pyrochemical reprocessing for MA nitride fuels.

Journal Articles

Development of a fast reactor and related thermal hydraulics studies in Japan

Ohshima, Hiroyuki; Kamide, Hideki

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.2095 - 2107, 2019/08

Development of a sodium-cooled fast reactor has been implemented in Japan from the viewpoint of severe accident countermeasures. This paper describes the progress of research and development related to safety enhancement and the severe accident countermeasures. A volcanic PRA methodology was developed for the proper consideration of external hazards. Water and sodium experiments were carried out for the decay heat removal in a core disruptive accident (CDA), and also thermal hydraulic interactions between the core and upper plenum where dipped heat exchanger was operated. In order to elucidate the behavior of molten fuel during CDA, basic experiments of core melt fragmentation in deep and shallow sodium pools were carried out. X-ray visualization showed the liquid column of molten steel was intensively fragmented nearly simultaneously with a rapid expansion of sodium vapor.

Journal Articles

Development of numerical estimation method for thermal hydraulics in reactor vessel of sodium-cooled fast reactor under decay heat removal system operation conditions; Preliminary thermal hydraulics simulation for simulated reactor vessel in sodium experimental apparatus PLANDTL-2

Tanaka, Masaaki; Ono, Ayako; Hamase, Erina; Ezure, Toshiki; Miyake, Yasuhiro*

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2018 Koen Rombunshu (CD-ROM), 4 Pages, 2018/08

Decay heat removal system (DHRS) by using the natural circulation without depending on the pump as the mechanical equipment is recognized as one of the most effective methodologies for the sodium-cooled fast reactor from the viewpoint of the safety enhancement. The numerical estimation method which can predict thermal hydraulic phenomena in the natural circulation under the plant cooling process by operating the various DHRSs including the severe accident is necessarily required. In this paper, the numerical results of the preliminary analysis for the sodium experiment condition with the apparatus of PLANDTL-2, in which the core and the upper plenum with a dipped-type direct heat exchanger (DHX) were modeled, were discussed, in order to establish an appropriate numerical models for the direct heat exchanger (DHX).

JAEA Reports

Evaluation of decay heat used for effectiveness evaluations of countermeasures against severe accidents in the prototype FBR Monju

Usami, Shin; Kishimoto, Yasufumi*; Taninaka, Hiroshi; Maeda, Shigetaka

JAEA-Technology 2018-003, 97 Pages, 2018/07

JAEA-Technology-2018-003.pdf:12.54MB

The decay heat used for effectiveness evaluation of the prevention measures against severe accidents in the prototype fast breeder reactor Monju was evaluated by applying the updated nuclear data libraries based on JENDL-4.0, reflecting the realistic core operation pattern, and setting the rational extent of uncertainty. The decay heats of fission products, the actinide nuclides such as Cm-242, and radioactive structural materials were calculated by FPGS code. The decay heat of U-239 and Np-239 was evaluated based on ANSI/ANS-5.1-1994. The calculation uncertainty of each decay heat was evaluated based on summation of uncertainty factors, C/E values of reaction rates obtained in Monju system startup test, and so on. Furthermore, the decay heat evaluation method based on the FPGS90 was verified by the comparison of the results of the decay heat measurement of the two spent MOX fuel subassemblies in the experimental fast reactor Joyo MK-II core.

Journal Articles

Study on applicability of fast reactor plant dynamics analysis code to core thermal hydraulics under natural circulation decay heat removal conditions

Hamase, Erina; Doda, Norihiro; Nabeshima, Kunihiko; Ono, Ayako; Ohshima, Hiroyuki

Nihon Kikai Gakkai Rombunshu (Internet), 83(848), p.16-00431_1 - 16-00431_11, 2017/04

A plant dynamics analysis code Super-COPD is being developed in JAEA for the design and safety assessments of sodium-cooled fast reactors (SFRs). In this study, the friction loss coefficients in the whole core thermal-hydraulic model was modified to improve the prediction accuracy of the sodium temperature distribution in a fuel subassembly under the natural circulation conditions. The modified whole core model was applied to analyses of experiments that were performed by using JAEA's test facility PLANDTL as a part of the code validation study. The obtained numerical results of sodium temperature distributions in the core showed good agreement with the measured data. It implies that the modified whole core model can properly reproduce dominant thermal-hydraulic phenomena in the core region under natural circulation conditions, i.e., flow redistribution among fuel subassemblies as well as in a fuel subassembly and inter-subassembly heat transfer.

Journal Articles

Design study on measures to prevent loss of decay heat removal in a next generation sodium-cooled fast reactor

Chikazawa, Yoshitaka; Kubo, Shigenobu; Shimakawa, Yoshio*; Kaneko, Fumiaki*; Shoji, Takashi*; Nakata, Shuhei*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

Sodium-cooled reactor (SFR) has superior characteristics thanks to sodium coolant features such as low pressure and high natural convection capability. Involving lessons learned from the 1F accident, requirements on design base DHRS have been modified. In that modification, safety requirements on design extended conditions have been clarified and sodium temperature criteria have been changed taking into account design margin even for design extended conditions. With the new DHRS configuration including ACS, designs of component cooling water system and emergency power supply have been updated.

Journal Articles

Development of core hot spot evaluation method of a loop type fast reactor equipped with natural circulation decay heat removal system

Doda, Norihiro; Ohshima, Hiroyuki; Kamide, Hideki; Watanabe, Osamu*

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 10 Pages, 2016/11

A natural circulation decay heat removal system is adopted in the design of an advanced loop type fast reactor in Japan. For the core structural integrity, we have developed a new evaluation method for the core hot spot temperature during natural circulation decay heat removal operations. In the method, safety analyses are performed with the plant dynamics models that can consider characteristic thermal-hydraulic phenomena under natural circulation conditions. In addition, the core hot spot temperature is estimated with its uncertainty quantified in the statistical manner. This paper describes the evaluation method and also the application results to a loss of offsite power event.

Journal Articles

Benchmark analysis of EBR-II shutdown heat removal test-17 using of plant dynamics analysis code and subchannel analysis code

Doda, Norihiro; Ohira, Hiroaki; Kamide, Hideki

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1618 - 1625, 2016/04

Sodium-cooled fast reactors have been developed aiming at introducing natural circulation decay heat removal systems by utilizing the characteristic of having a large coolant temperature difference between at the inlet and at the outlet of reactor vessel. In this study, as part of validation for core hot spot evaluation method which is required for adoption of natural circulation decay heat removal systems, an analysis of EBR-II (Experimental Breeder Reactor II) shutdown heat removal test using the method was performed. The results demonstrated that the evaluation method sufficiently predicts the whole plant thermal hydraulic behaviors and the maximum coolant temperature in a fuel subassembly during natural circulation decay heat removal operations.

JAEA Reports

JENDL decay data file 2015

Katakura, Junichi*; Minato, Futoshi

JAEA-Data/Code 2015-030, 97 Pages, 2016/03

JAEA-Data-Code-2015-030.pdf:1.01MB

JENDL Decay Data File 2015 (JENDL/DDF-2015) has been produced. The decay data of nuclides with mass numbers from 1 to 260 are included. The nuclides with unknown $$gamma$$- and/or beta-emission are also included in order to keep decay chains. The data of 1,284 fission product nuclides with mass from 66 to 172 remain unchanged from JENDL/FPD-2011 except several corrections which had been claimed by users, and those of the newly added 1,953 nuclides are taken from ENSDF. Finally, the decay data of 3,237 nuclides including 244 stable nuclides were compiled as JENDL/DDF-2015 file.

Journal Articles

Tritium accounting stability of a ZrCo bed with "In-bed" gas flowing calorimetry

Hayashi, Takumi; Suzuki, Takumi; Yamada, Masayuki; Nishi, Masataka

Fusion Science and Technology, 48(1), p.317 - 323, 2005/07

 Times Cited Count:10 Percentile:56.74(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Research and development on passive cooling system

Takada, Shoji

Nuclear Engineering and Design, 233(1-3), p.185 - 195, 2004/10

 Times Cited Count:6 Percentile:40.72(Nuclear Science & Technology)

Experiments are carried out to investigate the effects of the natural convection of superheated gas as well as of the stand pipes on the temperature distributions of the components and the heat removal performance in the water-cooling panel system for the MHTGR for decay heat removal, and to verify the design and evaluation methods. The numerical results of the code THANPACST2 are compared with the experimental data to verify the numerical methods and axi-symmetric model proposed, which can simulate the three-dimensional configuration of the stand pipes on the upper head of the pressure vessel by using porous body cells. The experiments revealed that temperatures increased with elevation on the upper head, because the stand pipes restrict radiation heat transfer to the upper cooling panel and reduce the heat transfer area on the upper head which was superheated by natural convection of helium gas in the pressure vessel. The numerical methods were able to closely duplicate the pattern of the rising temperature profile with elevation around the top of the upper head.

Journal Articles

Decay heat measurement of fusion related materials in an ITER-like neutron field

Morimoto, Yuichi*; Ochiai, Kentaro; Maekawa, Fujio; Wada, Masayuki*; Nishitani, Takeo; Takeuchi, Hiroshi

Journal of Nuclear Materials, 307-311(Part2), p.1052 - 1056, 2002/12

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Decay heat is one of the most important factors for the safety aspect of ITER. Especially, prediction of decay heat with uncertainty less than 15% for the three most important materials, i.e., copper, type-316 stainless steel (SS-316) and tungsten, is strongly requested by designers of ITER. To provide experimental decay heat data needed for validation of decay heat calculations for SS316 and copper, an experiment was conducted as the ITER/EDA task T-426. An ITER-like neutron field was constructed, and decay heat source distributions in thick copper and SS316 plates were measured with Whole Energy Absorption Spectrometer. The measured decay heat distributions in the thick sample plates were compared with the predicted values by MCNP calculations. It was found that the use of an effective activation cross section calculated by MCNP was needed to consider the self-shielding effects and, for both cases, MCNP calculations could predict decay heat adequately.

Journal Articles

Study on decay heat removal of compact ITER

Tsuru, Daigo; Neyatani, Yuzuru; Araki, Takao*; Nomoto, Kazuhiro*; Ohira, Shigeru; Maruo, Takeshi; Hashimoto, Masayoshi*; Hada, Kazuhiko; Tada, Eisuke

Fusion Engineering and Design, 58-59, p.985 - 989, 2001/11

 Times Cited Count:4 Percentile:33.39(Nuclear Science & Technology)

no abstracts in English

Journal Articles

FP decay heat calculation using JENDL FP decay data file

Katakura, Junichi

Proceedings of the 2001 Topical Meeting on Practical Implementation of Nuclear Criticality Safety (CD-ROM), 2 Pages, 2001/11

no abstracts in English

JAEA Reports

JENDL FP decay data file 2000

Katakura, Junichi; Yoshida, Tadashi*; Oyamatsu, Kazuhiro*; Tachibana, Takahiro*

JAERI 1343, 79 Pages, 2001/07

JAERI-1343.pdf:4.94MB

no abstracts in English

JAEA Reports

Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor; Comparisons of the decay heat removal characteristics on Lead, Lead-Bismuth and Sodium cooled reactors

Sakai, Takaaki; *; Ohshima, Hiroyuki; Yamaguchi, Akira

JNC TN9400 2000-033, 94 Pages, 2000/04

JNC-TN9400-2000-033.pdf:4.36MB

The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. ln this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube fairer accidents in a steam generator. ln this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in "Equivalent plant" with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. ln conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to conform the heat transfer reduction by the oxidize film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance.

JAEA Reports

None

JNC TN1400 99-016, 171 Pages, 1999/08

JNC-TN1400-99-016.pdf:8.97MB

no abstracts in English

Journal Articles

Estimation of reactor pool water temperature after shutdown in JRR-3M

; Sato, Mitzugu;

JAERI-Conf 99-006, p.136 - 141, 1999/08

no abstracts in English

Journal Articles

Current status of WIND project

Hashimoto, Kazuichiro; Harada, Yuhei; Maeda, Akio; Maruyama, Yu; Shibazaki, Hiroaki*; Kudo, Tamotsu; Hidaka, Akihide; Sugimoto, Jun

JAERI-Conf 99-005, p.161 - 164, 1999/07

no abstracts in English

JAEA Reports

Thermal-Hydraulic investigation on severaI fast reactor design concepts

Ohshima, Hiroyuki; Sakai, Takaaki; ; Yamaguchi, Akira; Nishi, Yoshihisa*; Ueda, Nobuyuki*; *

JNC TN9400 2000-077, 223 Pages, 1999/05

JNC-TN9400-2000-077.pdf:6.24MB

The feasibility study (Phase l) is being carried out at JNC to build up new design concepts of practical fast reactors (FRs) from the viewpoint of economy, safety, effective use of resources, reduction of environmental burden and non-proliferation. This report describes the results of the investigation, related to decay heat removal, core/fuel-assembly thermal-hydraulics and thermal-hydraulic correlations, that was performed in fiscal l999 as a part of the feasibility study. ln the study of the decay heat removal, the effects of several design parameters on the performance of the reactor vessel auxiliary cooling system (RVACS) in a middle-scale sodium-cooled FR were clarified by using a plant dynamic analysis code. The upper limit of RVACS performance was preliminarily estimated at approximately 0.5$$sim$$0.6 MWe. Numerical methods for the plant dynamic analysis of gas-and heavy-metal-cooled FRs were also developed. They were applied to the preliminary calculations of the transition from scram to natural circulation and the transient characteristics in tentative plant design concepts were clarified. ln addition, a dimensionless number indicating natural circulation performance was deduced for the comparison of several plant design concepts. With respect to the core/fuel-assembly thermal-hydraulics, numerical analysis methods were improved for the pin-type fuel assembly of gas-and heavy-metal-cooled FRs, the coated-particle- type fuel assembly of helium-gas-cooled FR, and the ductless core of sodium-and heavy-metal-cooled FRs. As preliminary evaluations, thermal-hydraulics in the heavy-metal-cooled FR fuel assembly was compared with sodium-cooled one and thermal-hydraulic analyses of carbon-dioxide- and helium-gas-cooled FR fuel assemblies were performed. The analysis for the fuel assembly with inside duct of sodium-cooled FR was also carried out. The correlations of pressure loss and heat transfer coefficient were investigated for the thermal-hydraulic ...

114 (Records 1-20 displayed on this page)